ORIGINAL ARTICLE

C. R. Jan · K. C. Lee · K. J. Chou · J. S. Cheng J. L. Wang · Y. K. Lo · H. T. Chang · K. Y. Tang C. C. Yu · J. K. Huang

Fendiline, an anti-anginal drug, increases intracellular Ca²⁺ in PC3 human prostate cancer cells

Received: 7 August 2000 / Accepted: 4 December 2000 / Published online: 12 April 2001 © Springer-Verlag 2001

Abstract *Background*: The effects of the anti-anginal drug fendiline on intracellular Ca^{2+} concentrations ($[Ca^{2+}]_i$) in human PC3 prostate cancer cells were examined. *Methods*: $[Ca^{2+}]_i$ was measured using the fluorescent dye fura-2. *Results*: Fendiline (0.5–100 μ*M*) increased $[Ca^{2+}]_i$ in a concentration-dependent manner. Ca^{2+} removal partly inhibited the Ca^{2+} signals. In Ca^{2+} -free medium, pretreatment with 100 μ*M* fendiline inhibited most of the $[Ca^{2+}]_i$ increase induced by 1 μ*M* thapsigargin (an endoplasmic reticulum Ca^{2+} pump inhibitor), and pretreatment with thapsigargin abolished the fendiline-induced $[Ca^{2+}]_i$ increases. Adding 3 m*M* Ca^{2+} increased $[Ca^{2+}]_i$ in cells pretreated with 0.5–200 μ*M* fendiline in Ca^{2+} -free medium. Pretreatment with 1 μ*M* U73122 to block the formation of inositol-1,4,5-trisphosphate (IP₃) did not alter fendiline-induced

internal Ca²⁺ release. *Conclusions*: The anti-anginal drug fendiline induced internal Ca²⁺ release and external Ca²⁺ entry. Because prolonged increases in [Ca²⁺]_i may lead to cell injury and death, the long-term effect of fendiline on the function of prostate cancer cells should be investigated.

Keywords Prostate cancer cells \cdot PC3 \cdot Fendiline \cdot Fura-2 \cdot Ca²⁺ signaling

C P Ion

Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

C. R. Jan

Department of Biology and Institute of Life Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan

K. C. Lee · K. J. Chou · J. S. Cheng · Y. K. Lo Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

J. L. Wang

Department of Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

H. T. Chang \cdot C. C. Yu \cdot J. K. Huang (\boxtimes) Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813

E-mail: crjan@isca.vghks.gov.tw Tel.: +886-7-34221218107

Fax: +886-7-3455064

K. Y. Tang

Department of Psychiatry, Kaohsiung Veterans General Hospital, Taiwan

K. C. Lee \cdot K. J. Chou \cdot J. S. Cheng \cdot J. L. Wang \cdot Y. K. Lo H. T. Chang \cdot K. Y. Tang \cdot C. C. Yu \cdot J. K. Huang School of Medicine, National Yang Ming University, Taipei, Taiwan

Introduction

Cellular Ca^{2+} is an important second messenger for growth regulation in cells [2, 3, 4]. Various agents have been shown to increase cytosolic free Ca^{2+} concentrations ($[Ca^{2+}]_i$) in PC3 androgen-independent human prostate cancer cells, including bombesin, gastrin-releasing peptide, ATP/UTP, lysophosphatidic acid, thrombin, endothelin, and histamine [22]. Thapsigargin and analogues [5, 7, 12], and calcitonin [16] also have similar effects. These findings indicate that androgen-independent prostate tumor cell lines express multiple types of Ca^{2+} -mobilizing machinery capable of elevating $[Ca^{2+}]_i$. Ca^{2+} -sensitive cellular events may therefore contribute to the progression of prostate cancer.

Aberrant Ca²⁺ signaling is a central feature of malignant cells and a potential target for anticancer therapy [21]. Programmed cell death (apoptosis) is a new target for prostatic cancer therapy [11]. In PC3 cells, apoptosis has been shown to be coupled to an increase in [Ca²⁺]_i [13, 19]. Thus, thapsigargin analogues have been found to cause apoptosis of PC3 cells [5, 7, 12], inducers of apoptosis have been shown to activate a Ca²⁺-permeable cation channel [9], and Ca²⁺ influx inhibitors that alter Ca²⁺-sensitive signal transduction pathways have been shown to suppress the proliferative and metastatic potential of PC3 cells [21].

Fendiline is an anti-anginal drug used in the treatment of coronary heart diseases [1]. In vitro, fendiline inhibits L-type Ca²⁺ channels [14, 20] and calmodulin

[1]. Notably, fendiline has been recently shown to act as a Ca²⁺ mobilizer in renal tubular cells by releasing stored Ca²⁺ and activating external Ca²⁺ influx [10]. Thus, in an attempt to search for new antiprostatic cancer drugs, in the present study the effects of fendiline on [Ca²⁺]_i in PC3 cells were investigated.

It was found using fura-2 as a Ca²⁺ probe that fendiline caused significant increases in [Ca²⁺]_i in PC3 cells. A concentration-response relationship was established, and the underlying mechanisms of the fendiline response determined.

Materials and methods

Cell culture

PC3 human prostate cancer cells were cultured in 93% Ham's F12 medium plus 7% fetal bovine serum, 100 U/ml penicillin and 100 μ g/ml streptomycin. Cells were kept at 37°C in humidified air containing 5% CO₂.

Solutions

 Ca^{2+} medium (pH 7.4) contained 140 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂, 10 mM Hepes, and 5 mM glucose. Ca^{2+} -free medium contained no added Ca^{2+} plus 1 mM EGTA. The experimental solution contained less than 0.1% solvent (dimethyl sulfoxide or ethanol) which did not affect $[Ca^{2+}]_i$ (n=3).

Optical measurements of [Ca²⁺]_i

Trypsinized cells ($10^6/\text{ml}$) were loaded with the ester form of fura-2, fura-2/AM, (2 μ M) for 30 min at 25°C in Ca²⁺ medium. Cells were washed and resuspended in Ca²⁺ medium before use. Fura-2 fluorescence measurements were performed in a water-jacketed cuvette (25°C) with continuous stirring. The cuvette contained 1 ml medium and 0.5×10^6 cells. Fluorescence was monitored using a Shimadzu RF1503PC spectrofluorophotometer by recording excitation signals at 340 and 380 nm and the emission signal at 510 nm at 1-s intervals. Maximum and minimum fluorescence values were obtained by adding 0.1% Triton X-100 and 20 mM EGTA sequentially at the end of each experiment. [Ca²⁺]_i was calculated as described previously [8].

Chemical reagents

The reagents for cell culture were from Gibco (Grand Island, N.Y.). Fura-2/AM was from Molecular Probes (Eugene, Ore.). Fendiline was from RBI (Natick, Mass.). All other reagents were from Sigma (St. Louis, Mo.).

Statistical analyses

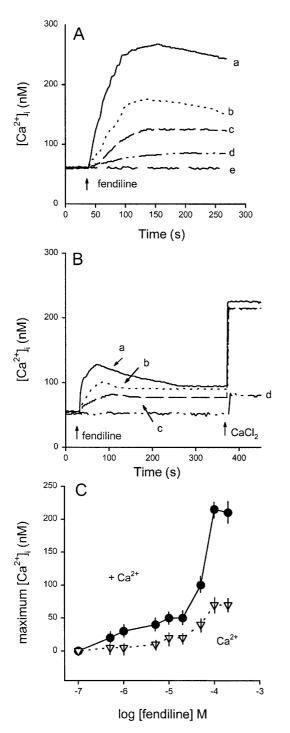
The plots are representative of four or five similar responses. All values are presented as the means \pm SEM from four or five experiments. Because the data from each experiment were the average of responses from 0.5×10^6 cells, the variation among experiments was small. This means that the mean \pm SEM of four or five experiments was able to reveal significant differences. Statistical comparisons were carried out using Student's *t*-test, and significance was accepted for *P*-values <0.05.

Results

Effect of fendiline on [Ca²⁺]_i

In the presence of external Ca^{2^+} , fendiline $(0.5\text{--}100~\mu\text{M})$ increased $[\text{Ca}^{2^+}]_i$ in a concentration-dependent manner (Fig. 1A). The response induced by $200~\mu\text{M}$ fendiline was similar to that induced by $100~\mu\text{M}$. At a concentration of $100~\mu\text{M}$, fendiline induced a $[\text{Ca}^{2^+}]_i$ increase which reached a maximum 121 ± 3 s (n=4;~P=0.014) later with a net value of $181\pm12~\text{nM}$ (n=4;~P=0.023), followed by a sustained phase. The rise in the Ca^{2^+} signal was slower in response to lower concentrations of fendiline. The $[\text{Ca}^{2^+}]_i$ increase induced by $50~\mu\text{M}$ fendiline was not affected by 0.1~mM La^{3^+} , $10~\mu\text{M}$ Ni^{2^+} , nifedipine, verapamil or diltiazem (n=3;~not shown).

Effect of external Ca²⁺ removal on the fendiline response


External Ca^{2+} removal partly inhibited the fendiline-induced $[\text{Ca}^{2+}]_i$ increase (Fig. 1B). The concentration-response relationships of the fendiline-induced $[\text{Ca}^{2+}]_i$ increase in the presence and absence of external Ca^{2+} are shown in Fig. 1C. Ca^{2+} removal abolished the $[\text{Ca}^{2+}]_i$ increases induced by 0.5–5 μM fendiline and partly inhibited the increases induced by 10–200 μM fendiline (n=5; P=0.012).

Effect of fendiline on Ca2+ influx

Depletion of internal Ca^{2+} pools often triggers Ca^{2+} influx via capacitative Ca^{2+} entry [15]. Capacitative Ca^{2+} entry is usually measured by reintroduction of Ca^{2+} following depletion of internal Ca^{2+} stores with the tested agent in Ca^{2+} -free medium. In Ca^{2+} -free medium, after pretreatment with 10–100 μM fendiline for 340 s, the addition of 3 mM CaCl $_2$ evoked an increase in $[Ca^{2+}]_i$ with a net maximum value of 150 ± 5 nM (traces a–c; n=4; P=0.011; Fig. 1B). Adding $CaCl_2$ alone induced only a small increase in $[Ca^{2+}]_i$ with a net maximum value of 23 ± 3 nM (trace d; n=4; P=0.009).

The internal source of the fendiline response

In Ca^{2^+} -free medium, the addition of 1 μM thapsigargin, an endoplasmic reticulum Ca^{2^+} pump inhibitor [17], induced a significant increase in $[\operatorname{Ca}^{2^+}]_i$ with a net maximum value of 81 ± 4 nM (n=4; P=0.025; Fig. 2A). This suggests that thapsigargin induced the release of Ca^{2^+} from the endoplasmic reticulum Ca^{2^+} store. Fendiline (100 μM) added subsequently failed to induce a significant increase in $[\operatorname{Ca}^{2^+}]_i$ (n=4; P=0.08). Conversely, pretreatment with 100 μM fendiline for about

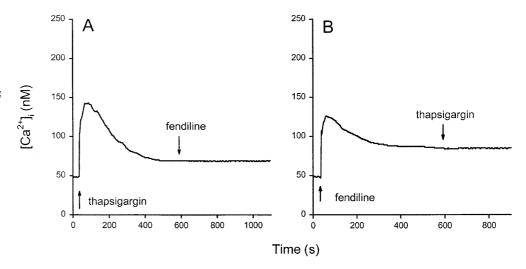
Fig. 1A–C Effects of fendiline on $[Ca^{2+}]_i$ in fura-2-loaded PC3 cells. **A** Fendiline-induced $[Ca^{2+}]_i$ increases in Ca^{2+} medium. The concentrations of fendiline were 100, 50, 10, 0.5 and 0 μ*M* (traces a, b, c, d, e, respectively). **B** Effect of external Ca^{2+} removal on the fendiline-induced $[Ca^{2+}]_i$ increase and the effect of reintroduction of Ca^{2+} . Fendiline (0–100 μ*M*) was added at 30 s to Ca^{2+} -free medium followed by the addition of 3 m*M* CaCl₂ at 380 s. The concentrations of fendiline were 100, 50, 10 and 0 μ*M* (traces a, b, c, d, respectively). **C** Concentration-response plots of fendiline induced Ca^{2+} signals in the presence (circles) and absence (triangles) of extracellular Ca^{2+} . The y-axis is the maximum value of the $[Ca^{2+}]_i$ response. Data are mean ± SEM from four or five experiments (*P<0.05 between circles and triangles)

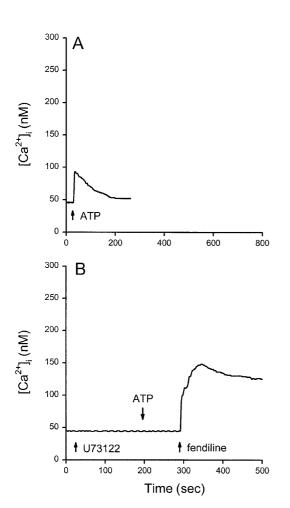
700 s abolished the thapsigargin-induced $[Ca^{2+}]_i$ increases (n=5; P=0.013).

Effect of blocking IP₃ formation on fendiline-induced Ca²⁺ release

Experiments were performed to determine whether fendiline induced release of internal Ca²⁺ via IP₃, by exploring the effect of inhibiting phospholipase C on fendiline-induced [Ca²⁺]_i increase. In Ca²⁺-free medium 10 μM ATP, a well-established IP₃-coupled Ca²⁺ mobilizer, induced a transient rise in [Ca2+]i, with a net maximum value of 45 ± 3 nM (n = 4; P = 0.015; Fig. 3A), suggesting that PC3 cells possess IP₃-coupled Ca²⁺mobilizing machinery. Pretreatment with 1 µM U73122, a phospholipase C inhibitor [18], for 170 s abolished the 10 μM ATP-induced [Ca²⁺]_i increase (n=5; P=0.018; Fig. 3B). This most likely suggests that IP₃ formation was inhibited by U73122. However, $100 \mu M$ fendiline added at 290 s still induced an increase in [Ca²⁺]_i which was indistinguishable from the control fendiline response shown in Fig. 1B (trace a; without U73122 and ATP pretreatment; n = 4).

Discussion


This study presents the first attempt to examine the effect of fendiline, a clinically used anti-anginal drug, on cultured human prostate cancer cells. Fendiline caused a significant concentration-dependent increase in $[Ca^{2+}]_i$ starting at a concentration of 0.5 μ M, and the response became saturated at 100 μ M. In Ca^{2+} medium, the $[Ca^{2+}]_i$ increases induced by fendiline were sustained during incubation for 5 min. Because prolonged elevations in $[Ca^{2+}]_i$ are closely linked to cell dysfunction and apoptosis [2, 3, 4, 11], the effect of fendiline on $[Ca^{2+}]_i$ may lead to cytotoxicity.


External Ca²⁺ influx and internal Ca²⁺ release contributed to the Ca²⁺ signal induced by fendiline because external Ca²⁺ removal partly inhibited the signal. The Ca²⁺ store of fendiline-induced Ca²⁺ appeared to be the thapsigargin-sensitive endoplasmic reticulum pool because in Ca²⁺-free medium, pretreatment with 1 µM thapsigargin abolished the fendiline-induced [Ca²⁺]_i increase and, vice versa, pretreatment with fendiline abolished the thapsigargin-induced [Ca²⁺]_i increase. This suggests that the endoplasmic reticulum is an important internal Ca²⁺ store in PC3 cells.

It appears that fendiline releases internal Ca^{2^+} in a manner independent of IP_3 levels because when IP_3 formation was suppressed by inhibiting phospholipase C with 1 μM U73122, fendiline still released internal Ca^{2^+} normally. It remains to be determined how fendiline releases Ca^{2^+} from the endoplasmic reticulum.

Another question was how fendiline induces Ca²⁺ influx. The data in Fig. 2B suggest that in Ca²⁺-free

Fig. 2A, B Internal Ca^{2+} stores of fendiline-induced Ca^{2+} release. A Thapsigargin (1 μ M) and fendiline (100 μ M) were added to Ca^{2+} -free medium, as shown. B Similar to A except that the order of drug addition was reversed

Fig. 3A, B Effect of inhibiting IP₃ formation on fendiline-induced $[{\rm Ca}^{2^+}]_i$ increase. **A** ATP (10 μ M) was added to ${\rm Ca}^{2^+}$ -free medium at 30 s. **B** U73122 (2 μ M), ATP (10 μ M) and fendiline (100 μ M) were added to ${\rm Ca}^{2^+}$ -free medium as shown

medium, after 5–200 μM fendiline had depleted the Ca²⁺ stores for 5 min, the addition of Ca²⁺ induced an increase in [Ca²⁺]_i to a maximum that was about five-

fold greater than control. This suggests that fendilineinduced Ca²⁺ influx could be via capacitative Ca²⁺ entry (a process controlled by Ca²⁺ store depletion), or direct opening of plasmalemmal Ca²⁺ channels.

Fendiline has been recently reported to increase $[Ca^{2+}]_i$ in a renal tubular cell line (MDCK) by releasing internal Ca^{2+} and activating external Ca^{2+} influx [10]. The effect of fendiline found in the present study was similar to that found in MDCK cells except for one striking difference. In MDCK cells, fendiline-induced external Ca^{2+} entry was inhibited by 0.1 mM La³⁺ by 50%, but in PC3 cells La³⁺ had no effect. This suggests that kidney cells and prostate cancer cells have different Ca^{2+} entry pathways.

The range of concentrations $(0.5-100 \ \mu M)$ at which fendiline has been found to increase $[Ca^{2+}]_i$ in nonexcitable cells such as renal cells and prostate cells is commonly used by researchers to inhibit voltage-gated Ca^{2+} channels in excitable cells. Fendiline has been found to inhibit the transient outward current in rat ventricular cardiomyocytes at 3 μM [6], block L-type Ca^{2+} channels in rat ventricular myocytes at 1 μM [14], and inhibit L-type Ca^{2+} channels in guinea-pig ventricular myocytes at 0.3–100 μM [20]. Due to its blocking effect on L-type Ca^{2+} channels, fendiline is used as an anti-anginal drug. However, our results suggest that the Ca^{2+} -mobilizing effect of fendiline on nonexcitable cells should be taken into consideration in its clinical use.

The effect of fendiline on $[Ca^{2+}]_i$ in human prostate cancer cells was investigated in this study, and the underlying mechanisms were also examined. Because it has been shown that patients with angina taking fendiline orally may have a fendiline serum level of 0.6 μM [23], our results may have clinical relevance.

Acknowledgements This work was supported by grants from the National Science Council (NSC89-2320-B-075B-015), the Veterans General Hospital-Kaohsiung (VGHKS90-07), the VTY Joint Research Program, and Tsou's Foundation (VTY89-P3-21) to C.R.J. and VGHKS90-63 to J.K.H.).

References

- Bayer R, Mannhold R (1987) Fendiline: a review of its basic pharmacological and clinical properties. Pharmatherapeutica 5:103
- Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315
- 3. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol (Lond) 499:291
- 4. Bootman MD, Berridge MJ, Lipp P (1993) Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91:367
- Christensen SB, Andersen A, Kromann H, Treiman M, Tombal B, Denmeade S, Isaacs JT (1999) Thapsigargin analogues for targeting programmed death of androgen-independent prostate cancer cells. Bioorg Med Chem 7:1273
- Fassbender V, Wegener JW, Shainberg A, Nawrath H (1999) Inhibition by fendiline of the transient outward current in rat ventricular cardiomyocytes. J Cardiovasc Pharmacol 33:905
- 7. Furuya Y, Lundmo P, Short AD, Gill DL, Isaacs JT (1994) The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res 54:6167
- Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440
- Gutierrez AA, Arias JM, Garcia L, Mas-Oliva J, Guerrero-Hernandez A (1999) Activation of a Ca²⁺-permeable cation channel by two different inducers of apoptosis in a human prostatic cancer cell line. J Physiol (Lond) 517:95
- Jan CR, Tseng CJ, Chen WC (2000) Fendiline increases [Ca²⁺]_i in Madin Darby canine kidney (MDCK) cells by releasing internal Ca²⁺ followed by capacitative Ca²⁺ entry. Life Sci 66:1053
- 11. Kyprianou N, Martikainen P, Davis L, English HF, Isaacs JT (1991) Programmed cell death as a new target for prostatic cancer therapy. Cancer Surv 11:265
- 12. Lin XS, Denmeade SR, Cisek L, Isaacs JT (1997) Mechanism and role of growth arrest in programmed (apoptotic) death of prostatic cancer cells induced by thapsigargin. Prostate 33:201
- Marin MC, Fernandez A, Bick RJ, Brisbay S, Buja LM, Snuggs M, McConkey DJ, von Eschenbach AC, Keating MJ,

- McDonnell TJ (1996) Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca²⁺. Oncogene 12:2259
- Nawrath H, Klein G, Rupp J, Wegener JW, Shainberg A (1998) Open state block by fendiline of L-type Ca²⁺ channels in ventricular myocytes from rat heart. J Pharmacol Exp Ther 285:546
- 15. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1
- 16. Shah GV, Rayford W, Noble MJ, Austenfeld M, Weigel J, Vamos S, Mebust WK (1994) Calcitonin stimulates growth of human prostate cancer cells through receptor-mediated increase in cyclic adenosine 3',5'-monophosphates and cytoplasmic Ca²⁺ transients. Endocrinology 134:596
- 17. Thastrup O, Cullen PT, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺-ATPase. Proc Natl Acad Sci USA 87:2466
- Thompson AK, Mostafapour SP, Denlinger LC, Bleasdale JE, Fisher SK (1991) The aminosteroid U73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. J Biol Chem 266:23856
- Tombal B, Denmeade SR, Isaacs JT (1999) Assessment and validation of a microinjection method for kinetic analysis of [Ca²⁺]_i in individual cells undergoing apoptosis. Cell Calcium 25:19
- Tripathi O, Schreibmayer W, Tritthart HA (1993) Fendiline inhibits L-type calcium channels in guinea-pig ventricular myocytes: a whole-cell patch-clamp study. Br J Pharmacol 108:865
- Wasilenko WJ, Palad AJ, Somers KD, Blackmore PF, Kohn EC, Rhim JS, Wright GL Jr, Schellhammer PF (1996) Effects of the calcium influx inhibitor carboxyamido-triazole on the proliferation and invasiveness of human prostate tumor cell lines. Int J Cancer 68:259
- Wasilenko WJ, Cooper J, Palad AJ, Somers KD, Blackmore PF, Rhim JS, Wright GL Jr, Schellhammer PF (1997) Calcium signaling in prostate cancer cells: evidence for multiple receptors and enhanced sensitivity to bombesin/GRP. Prostate 30:167
- Weyhenmeyer R, Fenzl E, Apecechea M, Rehm KD, Dyde CJ, Johnson KJ, Friedel R (1987) Tolerance and pharmacokinetics of oral fendiline. Arzneimittelforschung 37:58